Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.249
Filtrar
1.
J Wound Care ; 33(Sup4a): xcix-cx, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588056

RESUMO

Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.


Assuntos
Nanopartículas , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Biofilmes , Staphylococcus aureus , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Nanopartículas/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
2.
PLoS One ; 19(3): e0298829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512908

RESUMO

Chronic wounds are reoccurring healthcare problems in the United States and cost up to $50 billion annually. Improper wound care results in complications such as wound debridement, surgical amputation, and increased morbidity/ mortality due to opportunistic infections. To eliminate wound infections, many antimicrobial dressings are developed and submitted to FDA for evaluation. AATCC-100 is a standard method widely used to evaluate cloth wound dressings. This method, requires enrichment, followed by culturing to measure the concentration of culturable organisms; a caveat to this method could result in neglected viable but nonculturable (VBNC) bacteria and overestimate the antimicrobial properties of wound dressings. Therefore, the objectives of this study were to assess this accepted protocol with quantitative real-time polymerase chain reaction (qRT-PCR), to measure time dependent antimicrobial efficacy of wound dressing, and to examine for potential viable bacteria but non-culturable as compared with traditional plating methods. The test organisms included opportunistic pathogens: Pseudomonas aeruginosa (ATCC 15692) and Staphylococcus aureus (ATCC 43300). To mimic a wound dressing environment, samples of commercially available wound dressings (McKesson Inc.) with silver ion (positive control) and dressings without silver ion (positive control) were assessed under sterile conditions. All samples were examined by the original protocol (the extended AATCC-100 method) and qRT-PCR. The expression of specific housekeeping genes was measured (proC for P. aeruginosa and 16s rRNA for S. aureus). Based on these tests, log reduction of experimental conditions was compared to identify time dependent and precise antimicrobial properties from wound dressing samples. These results showed antimicrobial properties of wound dressings diminished as incubation days are increased for both methods from day 1 PCR result of 4.31 ± 0.54 and day 1 plating result of 6.31 ± 3.04 to day 3 PCR result of 1.22 ± 0.97 and day 3 plating result of 5.89 ± 2.41. These results show that data from qRT-PCR generally produced lower standard deviation than that of culture methods, hence shown to be more precise. Complementary parallel analysis of samples using both methods better characterized antimicrobial properties of the tested samples.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Humanos , Prata , Staphylococcus aureus , RNA Ribossômico 16S , Bandagens , Anti-Infecciosos/farmacologia , Infecção dos Ferimentos/microbiologia , Pseudomonas aeruginosa
3.
J Wound Care ; 33(3): 180-188, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451790

RESUMO

OBJECTIVE: The incidence of hard-to-heal wound infection, especially as a result of multidrug-resistant Gram-negative organisms, has increased in recent years. The reason for the increase is multifactorial and the ability of these pathogenic isolates to form biofilms is one of the important risk factors in wound infection. This study aimed to evaluate the risk factors associated with such cases. METHOD: This prospective analytical study, conducted over a period of two months, included pus or tissue samples from hospital inpatients with Gram-negative hard-to-heal wound infection. The samples were processed with conventional microbiological techniques. Patient demographic details and the presence of various risk factors were recorded. Biofilm production was detected by tissue culture plate method in the laboratory. The data were analysed using SPSS version 21 (IBM Ltd., US). RESULTS: The experimental cohort comprised 200 patients. Klebsiella spp. was the most common identified organism, followed by Escherichia coli and Pseudomonas spp. Carbapenem resistance was observed in 106 (53%) strains. Almost 66% of the strains showed biofilm formation. On evaluation of associated risk factors, age (p=0.043), presence of biofilms (p=0.0001), diabetes (p=0.002), hypertension (p=0.02) and medical device use (p=0.008) had significant association, whereas sex, previous surgery and prior antibiotic use had no significant impact on the chronicity of the wound. CONCLUSION: In this study, chronicity of wounds was observed to be associated with multiple risk factors, especially the biofilm-forming ability of the strain. Biofilms are difficult to eradicate and additional measures, such as physical debridement, are important for resolving chronicity. Knowledge about specific risk factors would also allow clinicians a better understanding of the healing process and drive appropriate wound care interventions. DECLARATION OF INTEREST: A grant was received from the Indian Council of Medical Research (ICMR) for this work (grant ID: 2017-02686). The authors have no conflicts of interest to declare.


Assuntos
Cicatrização , Infecção dos Ferimentos , Humanos , Centros de Atenção Terciária , Estudos Prospectivos , Infecção dos Ferimentos/epidemiologia , Infecção dos Ferimentos/microbiologia , Fatores de Risco , Biofilmes
4.
J Glob Antimicrob Resist ; 36: 371-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307250

RESUMO

OBJECTIVE: Bacterial wound infections have recently become a threat to public health. The emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae highlights the need for a new treatment method. The effectiveness of bacteriophages has been observed for several infections in animal models and human trials. In this study, we assessed the effectiveness of bacteriophages in the treatment of wound infections associated with MDR and biofilm-producing K. pneumoniae and compared its effectiveness with that of gentamicin. METHODS: A lytic phage against MDR K. pneumoniae was isolated and identified. The effectiveness of phages in the treatment of wound infection in mice was investigated and its effectiveness was compared with gentamicin. RESULTS: The results showed that the isolated phage belonged to the Drexlerviridae family. This phage acts like gentamicin and effectively eliminates bacteria from wounds. In addition, mice in the phage therapy group were in better physical condition. CONCLUSION: Our results demonstrated the success of phage therapy in the treatment of mice wounds infected with K. pneumoniae. These results indicate the feasibility of topical phage therapy for the safe treatment of wound infections.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecção dos Ferimentos , Humanos , Animais , Camundongos , Klebsiella pneumoniae , Gentamicinas/farmacologia , Infecção dos Ferimentos/microbiologia
5.
Antimicrob Agents Chemother ; 68(2): e0121623, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214514

RESUMO

The growing threat of antibiotic-resistant bacterial pathogens necessitates the development of alternative antimicrobial approaches. This is particularly true for chronic wound infections, which commonly harbor biofilm-dwelling bacteria. A novel electrochemical bandage (e-bandage) delivering low-levels of hypochlorous acid (HOCl) was evaluated against Pseudomonas aeruginosa murine wound biofilms. 5 mm skin wounds were created on the dorsum of mice and infected with 106 colony-forming units (CFU) of P. aeruginosa. Biofilms were formed over 2 days, after which e-bandages were placed on the wound beds and covered with Tegaderm. Mice were administered Tegaderm-only (control), non-polarized e-bandage (no HOCl production), or polarized e-bandage (using an HOCl-producing potentiostat), with or without systemic amikacin. Purulence and wound areas were measured before and after treatment. After 48 hours, wounds were harvested for bacterial quantification. Forty-eight hours of polarized e-bandage treatment resulted in mean biofilm reductions of 1.4 log10 CFUs/g (P = 0.0107) vs non-polarized controls and 2.2 log10 CFU/g (P = 0.004) vs Tegaderm-only controls. Amikacin improved CFU reduction in Tegaderm-only (P = 0.0045) and non-polarized control groups (P = 0.0312) but not in the polarized group (P = 0.3876). Compared to the Tegaderm-only group, there was less purulence in the polarized group (P = 0.009). Wound closure was neither impeded nor improved by either polarized or non-polarized e-bandage treatment. Concurrent amikacin did not impact wound closure or purulence. In conclusion, an HOCl-producing e-bandage reduced P. aeruginosa in wound biofilms with no impairment in wound healing, representing a promising antibiotic-free approach for addressing wound infection.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Camundongos , Pseudomonas aeruginosa , Ácido Hipocloroso , Amicacina , Infecções por Pseudomonas/microbiologia , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos , Biofilmes
6.
Biomed Mater ; 19(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181448

RESUMO

Antimicrobial wound dressings play a crucial role in treatment of wound infections. However, existing commercial options fall short due to antibiotic resistance and the limited spectrum of activity of newly emerging antimicrobials against bacteria that are frequently encountered in wound infections. Antimicrobial photodynamic therapy (aPDT) is very promising alternative therapeutic approach against antibiotic resistant microbes such as methicillin resistantStaphylococcus aureus (MRSA). However, delivery of the photosensitizer (PS) homogeneously to the wound site is a challenge. Though polymeric wound dressings based on synthetic and biopolymers are being explored for aPDT, there is paucity of data regarding theirin vivoefficacy. Moreover, there are no studies on use of PS loaded, pluoronic (PL) and pectin (PC) based films for aPDT. We report development of a polymeric film for potential use in aPDT. The film was prepared using PL and PC via solvent casting approach and impregnated with methylene blue (MB) for photodynamic inactivation of MRSAin vitroandin vivo. Atomic force microscopic imaging of the films yielded vivid pictures of surface topography, with rough surfaces, pores, and furrows. The PL:PC ratio (2:3) was optimized that would result in an intact film but exhibit rapid release of MB in time scale suitable for aPDT. The film showed good antibacterial activity against planktonic suspension, biofilm of MRSA upon exposure to red light. Investigations on MRSA infected excisional wounds of mice reveal that topical application of MB loaded film for 30 min followed by red light exposure for 5 min (fluence; ∼30 J cm-2) or 10 min (fluence; ∼60 J cm-2) reduces ∼80% or ∼92% of bioburden, respectively. Importantly, the film elicits no significant cytotoxicity against keratinocytes and human adipose derived mesenchymal stem cells. Taken together, our data demonstrate that PS-loaded PL-PC based films are a promising new tool for treatment of MRSA infected wounds.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Camundongos , Humanos , Meticilina/uso terapêutico , Poloxâmero/uso terapêutico , Azul de Metileno/uso terapêutico , Pectinas/uso terapêutico , Fármacos Fotossensibilizantes , Antibacterianos , Polímeros , Biofilmes , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
8.
Adv Mater ; 36(3): e2306589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37703451

RESUMO

Distinct from common injuries, deep burns often require a chronic recovery cycle for healing and long-term antibiotic treatment to prevent infection. The rise of drug-resistant bacteria has caused antibiotics to no longer be perfect, and continuous drug use can easily lead to repeated infection and even death. Inspired by wild animals that chew plants to prevent wound infection, probiotic extracts with a structure similar to the tailspike of phage are obtained from Lactobacillus casei and combined with different flavones to design a series of nonantibiotic bactericides. These novel antibacterial agents are combined with a rapid gelation spray with a novel cross-angle layout to form an instant protection spray (IPS) and provide a physical and anti-infectious barrier for burns within 30 s. This IPS is able to sterilize 100.00% and 96.14% of multidrug-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, respectively. In addition, it is found to effectively reduce inflammation in MRSA-infected burns in rats and to promote tissue healing.


Assuntos
Queimaduras , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Ratos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Staphylococcus aureus , Cicatrização , Infecções Estafilocócicas/tratamento farmacológico , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/prevenção & controle , Infecção dos Ferimentos/microbiologia
9.
Int Wound J ; 21(4): e14510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148595

RESUMO

From previous studies, we have shown that viable colony forming units of bacteria and bacterial biofilms are reduced after sequential treatment with a surfactant-based dressing. Here, we sought to test the impact on visible bacterial pigments and the ultrastructural impact following the sequential treatment of the same surfactant-based dressing. Mature Pseudomonas aeruginosa biofilms were grown on ex vivo porcine skin explants, and an imaging-based analysis was used to compare the skin with and without a concentrated surfactant. In explants naturally tinted by bacterial chromophores, wiping alone had no effect, while the use of a surfactant-based dressing reduced coloration. Similarly, daily wiping led to increased immunohistochemical staining for P. aeruginosa antigens, but not in the surfactant group. Confocal immunofluorescent imaging revealed limited bacterial penetration and coating of the dermis and loose pieces of sloughing material. Ultrastructural analysis confirmed that the biofilms were masking the extracellular matrix (ECM), but the surfactant could remove them, re-exposing the ECM. The masking of the ECM may provide another non-inflammatory explanation for delayed healing, as the ECM is no longer accessible for wound cell locomotion. The use of a poloxamer-based surfactant appears to be an effective way to remove bacterial chromophores and the biofilm coating the ECM fibres.


Assuntos
Surfactantes Pulmonares , Lesões dos Tecidos Moles , Infecção dos Ferimentos , Animais , Suínos , Tensoativos/farmacologia , Tensoativos/uso terapêutico , Pseudomonas aeruginosa , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Bandagens , Pele , Biofilmes
11.
Mil Med ; 188(Suppl 6): 304-310, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948254

RESUMO

INTRODUCTION: Battlefield-related wound infections are a significant source of morbidity among combat casualties. Seasonality of these infections was demonstrated in previous conflicts (e.g., Korea) but has not been described with trauma-related health care-associated infections from the war in Afghanistan. METHODS: The study population included military personnel wounded in Afghanistan (2009-2014) medevac'd to Landstuhl Regional Medical Center and transitioned to participating military hospitals in the United States with clinical suspicion of wound infections and wound cultures collected ≤7 days post-injury. Analysis was limited to the first wound culture from individuals. Infecting isolates were collected from skin and soft-tissue infections, osteomyelitis, and burn soft-tissue infections. Data were analyzed by season (winter [ December 1-February 28/29], spring [March 1-May 31], summer [June 1-August 31], and fall [September 1-November 30]). RESULTS: Among 316 patients, 297 (94.0%) sustained blast injuries with a median injury severity score and days from injury to initial culture of 33 and 3.5, respectively. Although all patients had a clinical suspicion of a wound infection, a diagnosis was confirmed in 198 (63%) patients. Gram-negative bacilli (59.5% of 316) were more commonly isolated from wound cultures in summer (68.1%) and fall (67.1%) versus winter (43.9%) and spring (45.1%; P < .001). Multidrug-resistant (MDR) Gram-negative bacilli (21.8%) were more common in summer (21.8%) and fall (30.6%) versus winter (7.3%) and spring (19.7%; P = .028). Findings were similar for infecting Gram-negative bacilli (72.7% of 198)-summer (79.5%) and fall (83.6%; P = .001)-and infecting MDR Gram-negative bacilli (27.3% of 198)-summer (25.6%) and fall (41.8%; P = .015). Infecting anaerobes were more common in winter (40%) compared to fall (11%; P = .036). Gram-positive organisms were not significantly different by season. CONCLUSION: Gram-negative bacilli, including infecting MDR Gram-negative bacilli, were more commonly recovered in summer/fall months from service members injured in Afghanistan. This may have implications for empiric antibiotic coverage during these months.


Assuntos
Militares , Infecções dos Tecidos Moles , Infecção dos Ferimentos , Ferimentos e Lesões , Humanos , Estados Unidos/epidemiologia , Afeganistão/epidemiologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/epidemiologia , Infecção dos Ferimentos/microbiologia , Bactérias Gram-Negativas , Antibioticoprofilaxia , Ferimentos e Lesões/epidemiologia
12.
Biomater Sci ; 12(1): 151-163, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37937608

RESUMO

Chronic skin wounds are often associated with multidrug-resistant bacteria, impeding the healing process. Bacteriophage (phage) therapy has been revitalized as a promising strategy to counter the growing concerns of antibiotic resistance. However, phage monotherapy also faces several application drawbacks, such as a narrow host spectrum, the advent of resistant phenotypes and poor stability of phage preparations. Phage-antibiotic synergistic (PAS) combination therapy has recently been suggested as a possible approach to overcome these shortcomings. In the present study, we employed a model PAS combination containing a vB_AbaM-IME-AB2 phage and colistin to develop stable wound dressings of PAS to mitigate infections associated with Acinetobacter baumannii. A set of thermosensitive hydrogels were synthesized with varying amounts of Pluronic® F-127 (PF-127 at 15, 17.5 and 20 w/w%) modified with/without 3 w/w% hydroxypropyl methylcellulose (HPMC). Most hydrogel formulations had a gelation temperature around skin temperature, suitable for topical application. The solidified gels were capable of releasing the encapsulated phage and colistin in a sustained manner to kill bacteria. The highest bactericidal effect was achieved with the formulation containing 17.5% PF-127 and 3% HPMC (F5), which effectively killed bacteria in both planktonic (by 5.66 log) and biofilm (by 3 log) states and inhibited bacterial regrowth. Good storage stability of F5 was also noted with negligible activity loss after 9 months of storage at 4 °C. The ex vivo antibacterial efficacy of the F5 hydrogel formulation was also investigated in a pork skin wound infection model, where it significantly reduced the bacterial burden by 4.65 log. These positive outcomes warrant its further development as a topical PAS-wound dressing.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Infecção dos Ferimentos , Humanos , Colistina/farmacologia , Bacteriófagos/genética , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
13.
Microbiol Spectr ; 11(6): e0252023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874143

RESUMO

IMPORTANCE: Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.


Assuntos
Metagenoma , Lesões Relacionadas à Guerra , Infecção dos Ferimentos , Humanos , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/microbiologia , Lesões Relacionadas à Guerra/diagnóstico , Lesões Relacionadas à Guerra/microbiologia
14.
Int J Biol Macromol ; 253(Pt 5): 127247, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802451

RESUMO

Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria are most commonly present in burn wound infections. Multidrug resistance (MDR) and biofilm formation make it difficult to treat these infections. Bacteriophages (BPs) are proven as an effective therapy against MDR as well as biofilm-associated wound infections. In the present work, a naturally inspired bacteriophage cocktail loaded chitosan microparticles-laden topical gel has been developed for the effective treatment of these infections. Bacteriophages against MDR S. aureus (BPSAФ1) and P. aeruginosa (BPPAФ1) were isolated and loaded separately and in combination into the chitosan microparticles (BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs), which were later incorporated into the SEPINEO™ P 600 gel (BPSAФ1-CHMPs-gel, BPPAФ1-CHMPs-gel, and MBP-CHMPs-gel). BPs were characterized for their morphology, lytic activity, burst size, and hemocompatibility, and BPs belongs to Caudoviricetes class. Furthermore, BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs had an average particle size of 1.19 ± 0.11, 1.42 ± 0.21, and 2.84 ± 0.28 µm, respectively, and expressed promising in vitro antibiofilm eradication potency. The ultrasound and photoacoustic imaging in infected burn wounds demonstrated improved wound healing reduced inflammation and increased oxygen saturation following treatment with BPs formulations. The obtained results suggested that the incorporation of the BPs in the MP-gel protected the BPs, sustained the BPs release, and improved the antibacterial activity.


Assuntos
Bacteriófagos , Queimaduras , Quitosana , Microgéis , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Staphylococcus aureus , Quitosana/farmacologia , Infecção dos Ferimentos/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Biofilmes , Queimaduras/complicações , Queimaduras/tratamento farmacológico
15.
Surg Infect (Larchmt) ; 24(7): 637-644, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37585605

RESUMO

Background: Surgical site infections can lead to serious complications and present a huge economic burden. Established wound infections can be difficult to eradicate so preventative measures, including antimicrobial dressings, are advantageous. Materials and Methods: The antimicrobial activity of an ionic silver, ethylenediaminetetraacetic acid (EDTA) and benzethonium chloride-containing (ISEB) surgical cover dressing (SCD) was compared with two other silver-containing SCDs (silver sulfate and ionic silver carboxymethylcellulose [CMC]) and a non-silver-containing CMC SCD control using an in vitro model. The dressings were tested against a range of gram-positive and gram-negative bacteria found in wound environments, including antibiotic resistant strains, using a direct inoculation simulated wound fluid (SWF) model. Dressings were fully hydrated with SWF and inoculated with a final concentration of 1 × 106 colony forming units (CFU) per 10 microliter of the challenge organisms. Dressings were incubated at 35°C ± 3°C for up to seven days; total viable counts (TVCs) were performed to determine bacterial bioburden. Results: All challenge organism levels remained high for the CMC SCD control and silver sulfate SCD throughout the test period. A greater than 95% reduction in TVCs was observed by four hours for all challenge organisms for the ISEB SCD, with non-detectable levels (<70 CFU per dressing) reached within 24 hours and sustained throughout the test period. Antimicrobial activity was less rapid with ionic silver CMC SCD, with 9 of 11 challenge organisms reaching undetectable levels within 6 to 72 hours. Conclusions: A more rapid antimicrobial activity was observed for the ISEB SCD compared with other dressings tested within this in vitro model.


Assuntos
Anti-Infecciosos , Queimaduras , Infecção dos Ferimentos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Bandagens , Queimaduras/microbiologia , Infecção dos Ferimentos/prevenção & controle , Infecção dos Ferimentos/microbiologia
16.
AAPS PharmSciTech ; 24(6): 165, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552374

RESUMO

Klebsiella pneumoniae is regarded as one of the most profound bacteria isolated from the debilitating injuries caused by burn wounds. In addition, the multidrug resistance (MDR) and biofilm formation make treating burn patients with clinically available antibiotics difficult. Bacteriophage therapy has been proven an effective alternative against biofilm-mediated wound infections caused by MDR bacterial strains. In the current study, the bacteriophage (BPKPФ1) against MDR Klebsiella pneumoniae was isolated and loaded into the chitosan microparticles (CHMPs), which was later incorporated into the Sepineo P 600 to convert into a gel (BPKPФ1-CHMP-gel). BPKPФ1 was characterized for lytic profile, morphological class, and burst size, which revealed that the BPKPФ1 belongs to the family Siphoviridae. Moreover, BPKPФ1 exhibited a narrow host range with 128 PFU/host cell of burst size. The BPKPФ1-loaded CHMPs showed an average particle size of  1.96 ± 0.51 µm, zeta potential 32.16 ± 0.41 mV, and entrapment efficiency in the range of 82.44 ± 1.31%. Further, the in vitro antibacterial and antibiofilm effectiveness of BPKPФ1-CHMPs-gel were examined. The in vivo potential of the BPKPФ1-CHMPs-gel was assessed using a rat model with MDR Klebsiella pneumoniae infected burn wound, which exhibited improved wound contraction (89.22 ± 0.48%) in 28 days with reduced inflammation, in comparison with different controls. Data in hand suggest the potential of bacteriophage therapy to be developed as personalized therapy in case of difficult-to-treat bacterial infections.


Assuntos
Bacteriófagos , Queimaduras , Quitosana , Infecções por Klebsiella , Infecção dos Ferimentos , Ratos , Animais , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos , Biofilmes , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Klebsiella pneumoniae , Géis , Queimaduras/tratamento farmacológico , Quitosana/farmacologia
17.
Int J Biol Macromol ; 247: 125636, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392924

RESUMO

A chronic wound is a serious complication associated with diabetes mellitus and is difficult to heal due to high glucose levels, oxidative stress, and biofilm-associated microbial infection. The structural complexity of microbial biofilm makes it impossible for antibiotics to penetrate the matrix, hence conventional antibiotic therapies became ineffective in clinical settings. This demonstrates an urgent need to find safer alternatives to reduce the prevalence of chronic wound infection associated with microbial biofilm. A novel approach to address these concerns is to inhibit biofilm formation using biological-macromolecule based nano-delivery system. Higher drug loading efficiency, sustained drug release, enhanced drug stability, and improved bioavailability are advantages of employing nano-drug delivery systems to prevent microbial colonization and biofilm formation in chronic wounds. This review covers the pathogenesis, microbial biofilm formation, and immune response to chronic wounds. Furthermore, we also focus on macromolecule-based nanoparticles as wound healing therapies to reduce the increased mortality associated with chronic wound infections.


Assuntos
Infecções Bacterianas , Infecção dos Ferimentos , Humanos , Cicatrização , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecção dos Ferimentos/microbiologia
18.
Wounds ; 35(7): E218-E223, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37523738

RESUMO

INTRODUCTION: DFUs are challenging chronic wounds that are vulnerable to infections. A fluorescence imaging device was developed to detect bacterial presence in wounds. This device utilizes the principle that when illuminated by violet light, some bacteria emit red fluorescence and others, such as Pseudomonas aeruginosa, emit cyan fluorescence. Several studies have reported the accuracy of this device. However, to the best of the authors' knowledge, no studies have examined the correlation between bacterial presence and tissue biopsy culture results in diabetic wounds. OBJECTIVE: This study aimed to investigate the diagnostic accuracy of a fluorescence imaging device using a tissue culture system. MATERIALS AND METHODS: Thirty-five patients (48 wounds) were included. Wounds were sampled using tissue culture methods and photographed using the fluorescence imaging device. Culture outcomes were categorized into non-Pseudomonas bacterial, Pseudomonas bacterial, both bacterial, and no-growth groups. Image outcomes were categorized into red, cyan, both colors, and negative groups. RESULTS: For detecting the presence of bacteria, the fluorescence imaging device showed a sensitivity, specificity, PPV, and NPV of 64.1%, 55.6%, 86.2%, and 26.3%, respectively, with an accuracy of 62.5%. For P aeruginosa, the device showed a sensitivity, specificity, PPV, and NPV of 66.7%, 87.2%, 54.6%, and 91.9%, respectively, with an accuracy of 83.3%. For non-Pseudomonas bacteria, the device showed a sensitivity, specificity, PPV, and NPV of 43.8%, 62.5%, 70.0%, and 35.7%, respectively, with an accuracy of 50.0%. CONCLUSION: The fluorescence imaging device can help to detect the bacterial bioburden; however, its accuracy may be lower than that reported in previous studies of diabetic wounds.


Assuntos
Diabetes Mellitus , Infecção dos Ferimentos , Humanos , Projetos Piloto , Bactérias , Imagem Óptica/métodos , Infecção dos Ferimentos/microbiologia , Pseudomonas aeruginosa
19.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511418

RESUMO

Antimicrobial peptides (AMPs) are promising alternatives to existing treatments for multidrug-resistant bacteria-infected wounds. Therefore, the effect of protegrin-1 (PG1), a potent porcine AMP with broad-spectrum activity, on wound healing was evaluated. PG1-overexpressing transgenic mice were used as an in vivo model to evaluate its healing efficiency against Staphylococcus aureus-infected (106 colony forming units) wounds. We analyzed the wounds under four specific conditions in the presence or absence of antibiotic treatment. We observed the resolution of bacterial infection and formation of neo-epithelium in S. aureus-infected wounds of the mice, even without antibiotic treatment, whereas all wild-type mice with bacterial infection died within 8 to 10 days due to uncontrolled bacterial proliferation. Interestingly, the wound area on day 7 was smaller (p < 0.01) in PG1 transgenic mice than that in the other groups, including antibiotic-treated mice, suggesting that PG1 exerts biological effects other than bactericidal effect. Additionally, we observed that the treatment of primary epidermal keratinocytes with recombinant PG1 enhanced cell migration in in vitro scratch and cell migration assays. This study contributes to the understanding of broad-spectrum endogenous cathelicidins with potent antimicrobial activities, such as PG1, on wound healing. Furthermore, our findings suggest that PG1 is a potent therapeutic candidate for wound healing.


Assuntos
Infecções Estafilocócicas , Infecção dos Ferimentos , Suínos , Camundongos , Animais , Catelicidinas/genética , Catelicidinas/farmacologia , Staphylococcus aureus , Camundongos Transgênicos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
20.
J Wound Care ; 32(6): 359-367, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300862

RESUMO

OBJECTIVE: Antiseptics are widely used in wound management to prevent or treat wound infections, and have been shown to have antibiofilm efficacy. The objective of this study was to assess the effectiveness of a polyhexamethylene biguanide (PHMB)-containing wound cleansing and irrigation solution on model biofilm of pathogens known to cause wound infections compared with a number of other antimicrobial wound cleansing and irrigation solutions. METHOD: Staphylococcus aureus and Pseudomonas aeruginosa single-species biofilms were cultured using microtitre plate and Centers for Disease Control and Prevention (CDC) biofilm reactor methods. Following a 24-hour incubation period, the biofilms were rinsed to remove planktonic microorganisms and then challenged with wound cleansing and irrigation solutions. Following incubation of the biofilms with a variety of concentrations of the test solutions (50%, 75% or 100%) for 20, 30, 40, 50 or 60 minutes, remaining viable organisms from the treated biofilms were quantified. RESULTS: The six antimicrobial wound cleansing and irrigation solutions used were all effective in eradicating Staphylococcus aureus biofilm bacteria in both test models. However, the results were more variable for the more tolerant Pseudomonas aeruginosa biofilm. Only one of the six solutions (sea salt and oxychlorite/NaOCl-containing solution) was able to eradicate Pseudomonas aeruginosa biofilm using the microtitre plate assay. Of the six solutions, three (a solution containing PHMB and poloxamer 188 surfactant, a solution containing hypochlorous acid (HOCl) and a solution containing NaOCl/HOCl) showed increasing levels of eradication of Pseudomonas aeruginosa biofilm microorganisms with increasing concentration and exposure time. Using the CDC biofilm reactor model, all six cleansing and irrigation solutions, except for the solution containing HOCl, were able to eradicate Pseudomonas aeruginosa biofilms such that no viable microorganisms were recovered. CONCLUSION: This study demonstrated that a PHMB-containing wound cleansing and irrigation solution was as effective as other antimicrobial wound irrigation solutions for antibiofilm efficacy. Together with the low toxicity, good safety profile and absence of any reported acquisition of bacterial resistance to PHMB, the antibiofilm effectiveness data support the alignment of this cleansing and irrigation solution with antimicrobial stewardship (AMS) strategies.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Desinfetantes , Infecção dos Ferimentos , Humanos , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Staphylococcus aureus , Desinfetantes/farmacologia , Desinfetantes/uso terapêutico , Biofilmes , Infecção dos Ferimentos/microbiologia , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...